scanpy.tl.ingest#
- scanpy.tl.ingest(adata, adata_ref, *, obs=None, embedding_method=('umap', 'pca'), labeling_method='knn', neighbors_key=None, inplace=True, **kwargs)[source]#
Map labels and embeddings from reference data to new data.
Integrating data using ingest and BBKNN
Integrates embeddings and annotations of an
adatawith a reference datasetadata_refthrough projecting on a PCA (or alternate model) that has been fitted on the reference data. The function uses a knn classifier for mapping labels and the UMAP package [McInnes et al., 2018] for mapping the embeddings.Note
We refer to this asymmetric dataset integration as ingesting annotations from reference data to new data. This is different from learning a joint representation that integrates both datasets in an unbiased way, as CCA (e.g. in Seurat) or a conditional VAE (e.g. in scVI) would do.
You need to run
neighbors()onadata_refbefore passing it.- Parameters:
- adata
AnnData The annotated data matrix of shape
n_obs×n_vars. Rows correspond to cells and columns to genes. This is the dataset without labels and embeddings.- adata_ref
AnnData The annotated data matrix of shape
n_obs×n_vars. Rows correspond to cells and columns to genes. Variables (n_varsandvar_names) ofadata_refshould be the same as inadata. This is the dataset with labels and embeddings which need to be mapped toadata.- obs
str|Iterable[str] |None(default:None) Labels’ keys in
adata_ref.obswhich need to be mapped toadata.obs(inferred for observation ofadata).- embedding_method
str|Iterable[str] (default:('umap', 'pca')) Embeddings in
adata_refwhich need to be mapped toadata. The only supported values are ‘umap’ and ‘pca’.- labeling_method
str(default:'knn') The method to map labels in
adata_ref.obstoadata.obs. The only supported value is ‘knn’.- neighbors_key
str|None(default:None) If not specified, ingest looks at adata_ref.uns[‘neighbors’] for neighbors settings and adata_ref.obsp[‘distances’] for distances (default storage places for pp.neighbors). If specified, ingest looks at adata_ref.uns[neighbors_key] for neighbors settings and adata_ref.obsp[adata_ref.uns[neighbors_key][‘distances_key’]] for distances.
- inplace
bool(default:True) Only works if
return_joint=False. Add labels and embeddings to the passedadata(ifTrue) or return a copy ofadatawith mapped embeddings and labels.
- adata
- Returns:
Returns
Noneifcopy=False, else returns anAnnDataobject. Sets the following fields:adata.obs[obs]pandas.Series(dtypecategory)Mapped labels.
adata.obsm['X_umap' | 'X_pca']numpy.ndarray(dtypefloat)Mapped embeddings.
'X_umap'ifembedding_methodis'umap','X_pca'ifembedding_methodis'pca'.
Example
Call sequence:
>>> import scanpy as sc >>> sc.pp.neighbors(adata_ref) >>> sc.tl.umap(adata_ref) >>> sc.tl.ingest(adata, adata_ref, obs="cell_type")