scanpy.datasets.pbmc68k_reduced#
- scanpy.datasets.pbmc68k_reduced()[source]#
- Subsampled and processed 68k PBMCs. - PBMC 68k dataset from 10x Genomics. - The original PBMC 68k dataset was preprocessed with steps including - normalize_total()[1] and- scale(). It was saved keeping only 724 cells and 221 highly variable genes.- The saved file contains the annotation of cell types (key: - 'bulk_labels'), UMAP coordinates, louvain clustering and gene rankings based on the- bulk_labels.- Return type:
- Returns:
- Annotated data matrix. 
 - Examples - >>> import scanpy as sc >>> sc.datasets.pbmc68k_reduced() AnnData object with n_obs × n_vars = 700 × 765 obs: 'bulk_labels', 'n_genes', 'percent_mito', 'n_counts', 'S_score', 'G2M_score', 'phase', 'louvain' var: 'n_counts', 'means', 'dispersions', 'dispersions_norm', 'highly_variable' uns: 'bulk_labels_colors', 'louvain', 'louvain_colors', 'neighbors', 'pca', 'rank_genes_groups' obsm: 'X_pca', 'X_umap' varm: 'PCs' obsp: 'distances', 'connectivities'