scanpy.experimental.pp.recipe_pearson_residuals#
- scanpy.experimental.pp.recipe_pearson_residuals(adata, *, theta=100, clip=None, n_top_genes=1000, batch_key=None, chunksize=1000, n_comps=50, random_state=0, kwargs_pca=mappingproxy({}), check_values=True, inplace=True)[source]#
Full pipeline for HVG selection and normalization by analytic Pearson residuals [Lause et al., 2021].
Applies gene selection based on Pearson residuals. On the resulting subset, Pearson residual normalization and PCA are performed.
Expects raw count input.
- Parameters:
- adata
AnnData The annotated data matrix of shape
n_obs×n_vars. Rows correspond to cells and columns to genes.- theta
float(default:100) The negative binomial overdispersion parameter
thetafor Pearson residuals. Higher values correspond to less overdispersion (var = mean + mean^2/theta), andtheta=np.infcorresponds to a Poisson model.- clip
float|None(default:None) Determines if and how residuals are clipped:
If
None, residuals are clipped to the interval[-sqrt(n_obs), sqrt(n_obs)], wheren_obsis the number of cells in the dataset (default behavior).If any scalar
c, residuals are clipped to the interval[-c, c]. Setclip=np.inffor no clipping.
- n_top_genes
int(default:1000) Number of highly-variable genes to keep. Mandatory if
flavor='seurat_v3'orflavor='pearson_residuals'.- batch_key
str|None(default:None) If specified, highly-variable genes are selected within each batch separately and merged. This simple process avoids the selection of batch-specific genes and acts as a lightweight batch correction method. Genes are first sorted by how many batches they are a HVG. If
flavor='pearson_residuals', ties are broken by the median rank (across batches) based on within-batch residual variance.- chunksize
int(default:1000) If
flavor='pearson_residuals', this dertermines how many genes are processed at once while computing the residual variance. Choosing a smaller value will reduce the required memory.- n_comps
int|None(default:50) Number of principal components to compute in the PCA step.
- random_state
float|None(default:0) Random seed for setting the initial states for the optimization in the PCA step.
- kwargs_pca
Mapping[str,Any] (default:mappingproxy({})) Dictionary of further keyword arguments passed on to
scanpy.pp.pca().- check_values
bool(default:True) If
True, checks if counts in selected layer are integers as expected by this function, and return a warning if non-integers are found. Otherwise, proceed without checking. Setting this toFalsecan speed up code for large datasets.- inplace
bool(default:True) If
True, updateadatawith results. Otherwise, return results. See below for details of what is returned.
- adata
- Return type:
- Returns:
If
inplace=False, separately returns the gene selection results (asDataFrame) and Pearson residual-based PCA results (asAnnData). Ifinplace=True, updatesadatawith the following fields for gene selection results:.var['highly_variable']boolboolean indicator of highly-variable genes.
.var['means']floatmeans per gene.
.var['variances']floatvariances per gene.
.var['residual_variances']floatPearson residual variance per gene. Averaged in the case of multiple batches.
.var['highly_variable_rank']floatRank of the gene according to residual variance, median rank in the case of multiple batches.
.var['highly_variable_nbatches']intIf batch_key is given, this denotes in how many batches genes are detected as HVG.
.var['highly_variable_intersection']boolIf batch_key is given, this denotes the genes that are highly variable in all batches.
The following fields contain Pearson residual-based PCA results and normalization settings:
.uns['pearson_residuals_normalization']['pearson_residuals_df']The subset of highly variable genes, normalized by Pearson residuals.
.uns['pearson_residuals_normalization']['theta']The used value of the overdisperion parameter theta.
.uns['pearson_residuals_normalization']['clip']The used value of the clipping parameter.
.obsm['X_pca']PCA representation of data after gene selection and Pearson residual normalization.
.varm['PCs']The principal components containing the loadings. When
inplace=Truethis will contain empty rows for the genes not selected during HVG selection..uns['pca']['variance_ratio']Ratio of explained variance.
.uns['pca']['variance']Explained variance, equivalent to the eigenvalues of the covariance matrix.