scanpy.pl.StackedViolin#
- class scanpy.pl.StackedViolin(adata, var_names, groupby, *, use_raw=None, log=False, num_categories=7, categories_order=None, title=None, figsize=None, gene_symbols=None, var_group_positions=None, var_group_labels=None, var_group_rotation=None, layer=None, standard_scale=None, ax=None, vmin=None, vmax=None, vcenter=None, norm=None, **kwds)[source]#
- Bases: - BasePlot- Stacked violin plots. - Makes a compact image composed of individual violin plots (from - violinplot()) stacked on top of each other. Useful to visualize gene expression per cluster.- Wraps - seaborn.violinplot()for- AnnData.- Parameters:
- adata AnnData
- Annotated data matrix. 
- var_names str|Sequence[str] |Mapping[str,str|Sequence[str]]
- var_namesshould be a valid subset of- adata.var_names. If- var_namesis a mapping, then the key is used as label to group the values (see- var_group_labels). The mapping values should be sequences of valid- adata.var_names. In this case either coloring or ‘brackets’ are used for the grouping of var names depending on the plot. When- var_namesis a mapping, then the- var_group_labelsand- var_group_positionsare set.
- groupby str|Sequence[str]
- The key of the observation grouping to consider. 
- use_raw bool|None(default:None)
- Use - rawattribute of- adataif present.
- log bool(default:False)
- Plot on logarithmic axis. 
- num_categories int(default:7)
- Only used if groupby observation is not categorical. This value determines the number of groups into which the groupby observation should be subdivided. 
- categories_order Sequence[str] |None(default:None)
- Order in which to show the categories. Note: add_dendrogram or add_totals can change the categories order. 
- figsize tuple[float,float] |None(default:None)
- Figure size when - multi_panel=True. Otherwise the- rcParam['figure.figsize]value is used. Format is (width, height)
- dendrogram
- If True or a valid dendrogram key, a dendrogram based on the hierarchical clustering between the - groupbycategories is added. The dendrogram information is computed using- scanpy.tl.dendrogram(). If- tl.dendrogramhas not been called previously the function is called with default parameters.
- gene_symbols str|None(default:None)
- Column name in - .varDataFrame that stores gene symbols. By default- var_namesrefer to the index column of the- .varDataFrame. Setting this option allows alternative names to be used.
- var_group_positions Sequence[tuple[int,int]] |None(default:None)
- Use this parameter to highlight groups of - var_names. This will draw a ‘bracket’ or a color block between the given start and end positions. If the parameter- var_group_labelsis set, the corresponding labels are added on top/left. E.g.- var_group_positions=[(4,10)]will add a bracket between the fourth- var_nameand the tenth- var_name. By giving more positions, more brackets/color blocks are drawn.
- var_group_labels Sequence[str] |None(default:None)
- Labels for each of the - var_group_positionsthat want to be highlighted.
- var_group_rotation float|None(default:None)
- Label rotation degrees. By default, labels larger than 4 characters are rotated 90 degrees. 
- layer str|None(default:None)
- Name of the AnnData object layer that wants to be plotted. By default adata.raw.X is plotted. If - use_raw=Falseis set, then- adata.Xis plotted. If- layeris set to a valid layer name, then the layer is plotted.- layertakes precedence over- use_raw.
- title str|None(default:None)
- Title for the figure 
- stripplot
- Add a stripplot on top of the violin plot. See - stripplot().
- jitter
- Add jitter to the stripplot (only when stripplot is True) See - stripplot().
- size
- Size of the jitter points. 
- order
- Order in which to show the categories. Note: if - dendrogram=Truethe categories order will be given by the dendrogram and- orderwill be ignored.
- density_norm
- The method used to scale the width of each violin. If ‘width’ (the default), each violin will have the same width. If ‘area’, each violin will have the same area. If ‘count’, a violin’s width corresponds to the number of observations. 
- row_palette
- The row palette determines the colors to use for the stacked violins. The value should be a valid seaborn or matplotlib palette name (see - color_palette()). Alternatively, a single color name or hex value can be passed, e.g.- 'red'or- '#cc33ff'.
- standard_scale Optional[Literal['var','group']] (default:None)
- Whether or not to standardize a dimension between 0 and 1, meaning for each variable or observation, subtract the minimum and divide each by its maximum. 
- swap_axes
- By default, the x axis contains - var_names(e.g. genes) and the y axis the- groupbycategories. By setting- swap_axesthen x are the- groupbycategories and y the- var_names. When swapping axes var_group_positions are no longer used
- kwds
- Are passed to - violinplot().
 
- adata 
 - See also - stacked_violin()
- simpler way to call StackedViolin but with less options. 
- violin()
- to plot marker genes identified using - rank_genes_groups()
 - Examples - >>> import scanpy as sc >>> adata = sc.datasets.pbmc68k_reduced() >>> markers = ["C1QA", "PSAP", "CD79A", "CD79B", "CST3", "LYZ"] >>> sc.pl.StackedViolin( ... adata, markers, groupby="bulk_labels", dendrogram=True ... ) <scanpy.plotting._stacked_violin.StackedViolin object at 0x...> - Using var_names as dict: - >>> markers = {"T-cell": "CD3D", "B-cell": "CD79A", "myeloid": "CST3"} >>> sc.pl.StackedViolin( ... adata, markers, groupby="bulk_labels", dendrogram=True ... ) <scanpy.plotting._stacked_violin.StackedViolin object at 0x...> - Attributes - Methods - style(*[, cmap, stripplot, jitter, ...])- Modify plot visual parameters.