scanpy.experimental.pp.highly_variable_genes#
- scanpy.experimental.pp.highly_variable_genes(adata, *, theta=100, clip=None, n_top_genes=None, batch_key=None, chunksize=1000, flavor='pearson_residuals', check_values=True, layer=None, subset=False, inplace=True)[source]#
Select highly variable genes using analytic Pearson residuals [Lause et al., 2021].
In Lause et al. [2021], Pearson residuals of a negative binomial offset model are computed (with overdispersion
thetashared across genes). By default, overdispersiontheta=100is used and residuals are clipped tosqrt(n_obs). Finally, genes are ranked by residual variance.Expects raw count input.
- Parameters:
- adata
AnnData The annotated data matrix of shape
n_obs×n_vars. Rows correspond to cells and columns to genes.- theta
float(default:100) The negative binomial overdispersion parameter
thetafor Pearson residuals. Higher values correspond to less overdispersion (var = mean + mean^2/theta), andtheta=np.infcorresponds to a Poisson model.- clip
float|None(default:None) Determines if and how residuals are clipped:
If
None, residuals are clipped to the interval[-sqrt(n_obs), sqrt(n_obs)], wheren_obsis the number of cells in the dataset (default behavior).If any scalar
c, residuals are clipped to the interval[-c, c]. Setclip=np.inffor no clipping.
- n_top_genes
int|None(default:None) Number of highly-variable genes to keep. Mandatory if
flavor='seurat_v3'orflavor='pearson_residuals'.- batch_key
str|None(default:None) If specified, highly-variable genes are selected within each batch separately and merged. This simple process avoids the selection of batch-specific genes and acts as a lightweight batch correction method. Genes are first sorted by how many batches they are a HVG. If
flavor='pearson_residuals', ties are broken by the median rank (across batches) based on within-batch residual variance.- chunksize
int(default:1000) If
flavor='pearson_residuals', this dertermines how many genes are processed at once while computing the residual variance. Choosing a smaller value will reduce the required memory.- flavor
Literal['pearson_residuals'] (default:'pearson_residuals') Choose the flavor for identifying highly variable genes. In this experimental version, only ‘pearson_residuals’ is functional.
- check_values
bool(default:True) If
True, checks if counts in selected layer are integers as expected by this function, and return a warning if non-integers are found. Otherwise, proceed without checking. Setting this toFalsecan speed up code for large datasets.- layer
str|None(default:None) Layer to use as input instead of
X. IfNone,Xis used.- subset
bool(default:False) If
True, subset the data to highly-variable genes after finding them. Otherwise merely indicate highly variable genes inadata.var(see below).- inplace
bool(default:True) If
True, updateadatawith results. Otherwise, return results. See below for details of what is returned.
- adata
- Return type:
- Returns:
If
inplace=True,adata.varis updated with the following fields. Otherwise, returns the same fields asDataFrame.- highly_variable
bool boolean indicator of highly-variable genes.
- means
float means per gene.
- variances
float variance per gene.
- residual_variances
float For
flavor='pearson_residuals', residual variance per gene. Averaged in the case of multiple batches.- highly_variable_rank
float For
flavor='pearson_residuals', rank of the gene according to residual. variance, median rank in the case of multiple batches.- highly_variable_nbatches
int If
batch_keygiven, denotes in how many batches genes are detected as HVG.- highly_variable_intersection
bool If
batch_keygiven, denotes the genes that are highly variable in all batches.
- highly_variable
Notes
Experimental version of
sc.pp.highly_variable_genes()