scanpy.datasets.pbmc3k_processed#
- scanpy.datasets.pbmc3k_processed()[source]#
- Processed 3k PBMCs from 10x Genomics. - Processed using the basic tutorial Preprocessing and clustering 3k PBMCs (legacy workflow). - For preprocessing, cells are filtered out that have few gene counts or too high a - percent_mito. The counts are logarithmized and only genes marked by- highly_variable_genes()are retained. The- obsvariables- n_countsand- percent_mitoare corrected for using- regress_out(), and values are scaled and clipped by- scale(). Finally,- pca()and- neighbors()are calculated.- As analysis steps, the embeddings - tsne()and- umap()are performed. Communities are identified using- louvain()and marker genes using- rank_genes_groups().- Return type:
- Returns:
- Annotated data matrix. 
 - Examples - >>> import scanpy as sc >>> sc.datasets.pbmc3k_processed() AnnData object with n_obs × n_vars = 2638 × 1838 obs: 'n_genes', 'percent_mito', 'n_counts', 'louvain' var: 'n_cells' uns: 'draw_graph', 'louvain', 'louvain_colors', 'neighbors', 'pca', 'rank_genes_groups' obsm: 'X_pca', 'X_tsne', 'X_umap', 'X_draw_graph_fr' varm: 'PCs' obsp: 'distances', 'connectivities'