scanpy.pp.combat#
- scanpy.pp.combat(adata, key='batch', *, covariates=None, inplace=True)[source]#
ComBat function for batch effect correction [Johnson et al., 2006, Leek et al., 2017, Pedersen, 2012].
Corrects for batch effects by fitting linear models, gains statistical power via an EB framework where information is borrowed across genes. This uses the implementation combat.py [Pedersen, 2012].
- Parameters:
- adata
AnnData Annotated data matrix
- key
str(default:'batch') Key to a categorical annotation from
obsthat will be used for batch effect removal.- covariates
Collection[str] |None(default:None) Additional covariates besides the batch variable such as adjustment variables or biological condition. This parameter refers to the design matrix
Xin Equation 2.1 in Johnson et al. [2006] and to themodargument in the original combat function in the sva R package. Note that not including covariates may introduce bias or lead to the removal of biological signal in unbalanced designs.- inplace
bool(default:True) Whether to replace adata.X or to return the corrected data
- adata
- Return type:
- Returns:
Returns
numpy.ndarrayifinplace=False, else returnsNoneand sets the following field in theadataobject:adata.Xnumpy.ndarray(dtypefloat)Corrected data matrix.